Numerical Simulation Investigation on the Windage Power Loss of a High-Speed Face Gear Drive

Author:

Dai Yu,Ma FeiyueORCID,Zhu Xiang,Jia Jifu

Abstract

Reducing the energy consumption and improving the efficiency of high-speed transmission systems are increasingly common goals; the windage power loss is not negligible in these methods. In this work, the multi-reference frame (MRF) and periodic boundary conditions (PBC) based on the computational fluid dynamics (CFD) method were adopted to investigate the windage phenomena of a single face gear with and without a shroud, and the impact of the gear speed on the windage power loss was analyzed. Furthermore, the effects on the distribution of static pressure due to the distances between the shroud and the gear body in different directions, including the outer radius direction, the inner radius direction, and the addendum direction were investigated. The results indicate that the gear speed significantly affected the windage loss, as the higher the gear speed was, the greater the windage power loss. Additionally, the shroud could effectively reduce the windage power loss, where the optimal distance from the addendum to the shroud was not the minimum distance; however, for the distances from the shroud to the inner radius and the outer radius, the smaller the distance was, the smaller the windage loss. The results can provide a theoretical basis and technical reference for reducing the windage power loss of various face gear drives.

Funder

National Defense Preliminary Research Project of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3