Evaluation and Optimization of the Oil Jet Lubrication Performance for Orthogonal Face Gear Drive: Modelling, Simulation and Experimental Validation

Author:

Dai Yu,Ma FeiyueORCID,Zhu Xiang,Su Qiao,Hu Xiaozhou

Abstract

The oil jet lubrication performance of a high-speed and heavy-load gear drive is significantly influenced and determined by the oil jet nozzle layout, as there is extremely limited meshing clearance for the impinging oil stream and an inevitable blocking effect by the rotating gears. A novel mathematical model for calculating the impingement depth of lubrication oil jetting on an orthogonal face gear surface has been developed based on meshing face gear theory and the oil jet lubrication process, and this model contains comprehensive design parameters for the jet nozzle layout and face gear pair. Computational fluid dynamic (CFD) numerical simulations for the oil jet lubrication of an orthogonal face gear pair under different nozzle layout parameters show that a greater mathematically calculated jet impingement depth results in a greater oil volume fraction and oil pressure distribution. The influences of the jet nozzle layout parameters on the lubrication performance have been analyzed and optimized. The relationship between the measured tooth surface temperature from the experiments and the corresponding calculated impingement depth shows that a lower temperature appears in a situation with a greater impingement depth. Good agreement between the mathematical model with the numerical simulation and the experiment validates the effectiveness and accuracy of the method for evaluating the face gear oil jet lubrication performance when using the impingement depth mathematical model.

Funder

The National Defense Preliminary Research Project of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3