Abstract
Bi 2 Se 3 has extensive application as thermoelectric materials. Here, large-scale Bi 2 Se 3 single-crystal hexagonal nanoplates with size 7.50–10.0 μ m were synthesized successfully by hydrothermal method. X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscope (TEM) were used to characterize the Bi 2 Se 3 nanoplates, which confirm the single-crystal quality and smooth surface morphology with large size. Micro-Raman spectra over a temperature range of 83–603 K were furthermore used to investigate the lattice dynamics of Bi 2 Se 3 nanoplates. Both 2A g 1 and 1E g 2 modes shift evidently with reduced temperature. The line shape demonstrates a significant broadening of full width at half maximum (FWHM) and red-shift of frequency with increased temperature. The temperature coefficient of A 1 g 1 , E g 2 , A 1 g 2 modes were determined to be −1.258 × 10 − 2 cm − 1 /K, −1.385 × 10 − 2 cm − 1 /K, −2.363 × 10 − 2 cm − 1 /K, respectively. Such low temperature coefficient may favor the obtaining of a high figure of merit (ZT) and indicate that Bi 2 Se 3 nanoplates were used as excellent candidates of thermoelectric materials.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献