Green Synthesis and Morphological Evolution for Bi2Te3 Nanosystems via a PVP-Assisted Hydrothermal Method

Author:

Zhou Fang12,Zhou Weichang2,Zhao Yujing23,Liu Li4

Affiliation:

1. Department of Criminal Science and Technology, Department of Foundation Course, Hunan Police College, Changsha 410138, China

2. School of Physics and Electronics, Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province and Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China

3. School of Physics, Electronictechnology and Intelligent Manufacturing, Huaihua University, Huaihua 418008, China

4. School of Mathematics, Computer Science and Engineering, University of London, London EC1V 0HB, UK

Abstract

Bi2Te3 has been extensively used because of its excellent thermoelectric properties at room temperature. Here, 230–420 nm of Bi2Te3 hexagonal nanosheets has been successfully synthesized via a “green” method by using ethylene glycol solution and applying polyvinyl pyrrolidone (PVP) as a surfactant. In addition, factors influencing morphological evolution are discussed in detail in this study. Among these parameters, the reaction temperature, molar mass of NaOH, different surfactants, and reaction duration are considered as the most essential. The results show that the existence of PVP is vital to the formation of a plate-like morphology. The reaction temperature and alkaline surroundings played essential roles in the formation of Bi2Te3 single crystals. By spark plasma sintering, the Bi2Te3 hexagonal nanosheets were hot pressed into solid-state samples. We also studied the transport properties of solid-state samples. The electrical conductivity σ was 18.5 × 103 Sm−1 to 28.69 × 103 Sm−1, and the Seebeck coefficient S was −90.4 to −113.3 µVK−1 over a temperature range of 300–550 K. In conclusion, the observation above could serve as a catalyst for future exploration into photocatalysis, solar cells, nonlinear optics, thermoelectric generators, and ultraviolet selective photodetectors of Bi2Te3 nanosheet-based photodetectors.

Funder

National Natural Science Foundation of China

Open Project Funding of Key Laboratory of Low Dimensional Quantum Structures and Quantum Control

Natural Science Foundation of Hunan Province of China

Scientific Research Fund of Hunan Provincial Education Department

High-level-talent Initiation Research Fund of Hunan Police College

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3