Particle Swarm Optimization Algorithm-Based Design Method for Ultrasonic Transducers

Author:

Chen Dongdong,Zhao Jianxin,Fei Chunlong,Li DiORCID,Zhu Yuanbo,Li Zhaoxi,Guo Rong,Lou Lifei,Feng Wei,Yang Yintang

Abstract

In order to improve the fabrication efficiency and performance of an ultrasonic transducer (UT), a particle swarm optimization (PSO) algorithm-based design method was established and combined with an electrically equivalent circuit model. The relationship between the design and performance parameters of the UT is described by an electrically equivalent circuit model. Optimality criteria were established according to the desired performance; then, the design parameters were iteratively optimized using a PSO algorithm. The Pb(ZrxTi1−x)O3 (PZT) ceramic UT was designed by the proposed method to verify its effectiveness. A center frequency of 6 MHz and a bandwidth of −6 dB (70%) were the desired performance characteristics. The optimized thicknesses of the piezoelectric and matching layers were 255 μm and 102 μm. The experimental results agree with those determined by the equivalent circuit model, and the center frequency and −6 dB bandwidth of the fabricated UT were 6.3 MHz and 68.25%, respectively, which verifies the effectiveness of the developed optimization design method.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3