Response Bandwidth Design of Fabry-Perot Sensors for Partial Discharge Detection Based on Frequency Analysis

Author:

Chen Qi-Chao1ORCID,Zhang Wei-Chao1ORCID,Zhao Hong1ORCID

Affiliation:

1. Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, China

Abstract

The insulation of power equipment can be effectively assessed by analyzing the acoustic signals originated from partial discharges (PD). Fabry-Perot (F-P) sensors are capable of detecting PD acoustic signals. Although the frequency bandwidth of an F-P sensor is mainly referred to conventional piezoelectric transducer (PZT) sensor, it is still doubtful to identify a suitable bandwidth for fiber sensors in detection of PD signals. To achieve a suitable bandwidth for an F-P sensor, the frequency distribution of PD acoustic emission is investigated, and an extrinsic F-P sensor is designed to detect acoustic signals generated from PD. F-P sensors with different intrinsic frequencies are fabricated as possible design standards of bandwidth for acoustic detection. PD acoustic signals are detected by these F-P sensors and PZT sensors in the experimental system, in which four typical electrode models are employed. The measured results of frequency performance are analyzed in linear and semilogarithmic coordinates. The results show that F-P sensors can effectively detect PD acoustic emissions in both wideband and narrowband modes. Moreover, F-P sensors achieve a higher sensitivity in the narrowband mode. We propose that intrinsic frequency of the F-P sensor should be designed in the frequency range of 100–170 kHz to obtain maximum sensitivity.

Funder

Fundamental Research Foundation for Universities of Heilongjiang Province

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3