Fast SAR Autofocus Based on Ensemble Convolutional Extreme Learning Machine

Author:

Liu ZhiORCID,Yang ShuyuanORCID,Feng Zhixi,Gao Quanwei,Wang Min

Abstract

Inaccurate Synthetic Aperture Radar (SAR) navigation information will lead to unknown phase errors in SAR data. Uncompensated phase errors can blur the SAR images. Autofocus is a technique that can automatically estimate phase errors from data. However, existing autofocus algorithms either have poor focusing quality or a slow focusing speed. In this paper, an ensemble learning-based autofocus method is proposed. Convolutional Extreme Learning Machine (CELM) is constructed and utilized to estimate the phase error. However, the performance of a single CELM is poor. To overcome this, a novel, metric-based combination strategy is proposed, combining multiple CELMs to further improve the estimation accuracy. The proposed model is trained with the classical bagging-based ensemble learning method. The training and testing process is non-iterative and fast. Experimental results conducted on real SAR data show that the proposed method has a good trade-off between focusing quality and speed.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3