An Efficient Recognition Method for Orbital Angular Momentum via Adaptive Deep ELM

Author:

Yu Haiyang1ORCID,Chen Chunyi1,Hu Xiaojuan1,Yang Huamin1ORCID

Affiliation:

1. School of Computer Science and Technology, Changchun University of Science and Technology, Changchun 130022, China

Abstract

For orbital angular momentum (OAM) recognition in atmosphere turbulence, how to design a self-adapted model is a challenging problem. To address this issue, an efficient deep learning framework that uses a derived extreme learning machine (ELM) has been put forward. Different from typical neural network methods, the provided analytical machine learning model can match the different OAM modes automatically. In the model selection phase, a multilayer ELM is adopted to quantify the laser spot characteristics. In the parameter optimization phase, a fast iterative shrinkage-thresholding algorithm makes the model present the analytic expression. After the feature extraction of the received intensity distributions, the proposed method develops a relationship between laser spot and OAM mode, thus building the steady neural network architecture for the new received vortex beam. The whole recognition process avoids the trial and error caused by user intervention, which makes the model suitable for a time-varying atmospheric environment. Numerical simulations are conducted on different experimental datasets. The results demonstrate that the proposed method has a better capacity for OAM recognition.

Funder

National Natural Science Foundation of China

Development Program of Science and Technology of Jilin Province of China

Key Laboratory of Optical Control and Optical Information Transmission Technology, Ministry of Education

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3