Multi-Sector Oriented Object Detector for Accurate Localization in Optical Remote Sensing Images

Author:

He XuORCID,Ma Shiping,He Linyuan,Ru Le,Wang Chen

Abstract

Oriented object detection in optical remote sensing images (ORSIs) is a challenging task since the targets in ORSIs are displayed in an arbitrarily oriented manner and on small scales, and are densely packed. Current state-of-the-art oriented object detection models used in ORSIs primarily evolved from anchor-based and direct regression-based detection paradigms. Nevertheless, they still encounter a design difficulty from handcrafted anchor definitions and learning complexities in direct localization regression. To tackle these issues, in this paper, we proposed a novel multi-sector oriented object detection framework called MSO2-Det, which quantizes the scales and orientation prediction of targets in ORSIs via an anchor-free classification-to-regression approach. Specifically, we first represented the arbitrarily oriented bounding box as four scale offsets and angles in four quadrant sectors of the corresponding Cartesian coordinate system. Then, we divided the scales and angle space into multiple discrete sectors and obtained more accurate localization information by a coarse-granularity classification to fine-grained regression strategy. In addition, to decrease the angular-sector classification loss and accelerate the network’s convergence, we designed a smooth angular-sector label (SASL) that smoothly distributes label values with a definite tolerance radius. Finally, we proposed a localization-aided detection score (LADS) to better represent the confidence of a detected box by combining the category-classification score and the sector-selection score. The proposed MSO2-Det achieves state-of-the-art results on three widely used benchmarks, including the DOTA, HRSC2016, and UCAS-AOD data sets.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3