Abstract
Motion error is one of the most serious problems in airborne synthetic aperture radar (SAR) data processing. For a smoothly distributing backscatter scene or a seriously speed-varying velocity platform, the autofocusing performances of conventional algorithms, e.g., map-drift (MD) or phase gradient autofocus (PGA) are limited by their estimators. In this paper, combining the trajectories measured by global position system (GPS) and inertial navigation system (INS), we propose a novel error compensation method for varying accelerated airborne SAR based on the best linear unbiased estimation (BLUE). The proposed compensating method is particularly intended for varying acceleration SAR or homogeneous backscatter scenes, the processing procedures and computational cost of which are much simpler and lower than those of MD and PGA algorithms.
Subject
General Earth and Planetary Sciences
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献