Categorical Variable Mapping Considerations in Classification Problems: Protein Application

Author:

Alfonso Perez Gerardo1ORCID,Castillo Raquel1

Affiliation:

1. Biocomp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castello, Spain

Abstract

The mapping of categorical variables into numerical values is common in machine learning classification problems. This type of mapping is frequently performed in a relatively arbitrary manner. We present a series of four assumptions (tested numerically) regarding these mappings in the context of protein classification using amino acid information. This assumption involves the mapping of categorical variables into protein classification problems without the need to use approaches such as natural language process (NLP). The first three assumptions relate to equivalent mappings, and the fourth involves a comparable mapping using a proposed eigenvalue-based matrix representation of the amino acid chain. These assumptions were tested across a range of 23 different machine learning algorithms. It is shown that the numerical simulations are consistent with the presented assumptions, such as translation and permutations, and that the eigenvalue approach generates classifications that are statistically not different from the base case or that have higher mean values while at the same time providing some advantages such as having a fixed predetermined dimensions regardless of the size of the analyzed protein. This approach generated an accuracy of 83.25%. An optimization algorithm is also presented that selects an appropriate number of neurons in an artificial neural network applied to the above-mentioned protein classification problem, achieving an accuracy of 85.02%. The model includes a quadratic penalty function to decrease the chances of overfitting.

Funder

Spanish Ministerio de Ciencia, Innovación y Universidades

Universitat Jaume I

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3