Protein model quality assessment using 3D oriented convolutional neural networks

Author:

Pagès Guillaume1,Charmettant Benoit1,Grudinin Sergei1

Affiliation:

1. Université Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, Grenoble, France

Abstract

Abstract Motivation Protein model quality assessment (QA) is a crucial and yet open problem in structural bioinformatics. The current best methods for single-model QA typically combine results from different approaches, each based on different input features constructed by experts in the field. Then, the prediction model is trained using a machine-learning algorithm. Recently, with the development of convolutional neural networks (CNN), the training paradigm has changed. In computer vision, the expert-developed features have been significantly overpassed by automatically trained convolutional filters. This motivated us to apply a three-dimensional (3D) CNN to the problem of protein model QA. Results We developed Ornate (Oriented Routed Neural network with Automatic Typing)—a novel method for single-model QA. Ornate is a residue-wise scoring function that takes as input 3D density maps. It predicts the local (residue-wise) and the global model quality through a deep 3D CNN. Specifically, Ornate aligns the input density map, corresponding to each residue and its neighborhood, with the backbone topology of this residue. This circumvents the problem of ambiguous orientations of the initial models. Also, Ornate includes automatic identification of atom types and dynamic routing of the data in the network. Established benchmarks (CASP 11 and CASP 12) demonstrate the state-of-the-art performance of our approach among single-model QA methods. Availability and implementation The method is available at https://team.inria.fr/nano-d/software/Ornate/. It consists of a C++ executable that transforms molecular structures into volumetric density maps, and a Python code based on the TensorFlow framework for applying the Ornate model to these maps. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

L’Agence Nationale de la Recherche

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference32 articles.

1. Tensorflow: a system for large-scale machine learning;Abadi,2016

2. Protein single-model quality assessment by feature-based probability density functions;Cao;Sci. Rep.,2016

3. DeepQA: improving the estimation of single protein model quality with deep belief networks;Cao;BMC Bioinform.,2016

4. Fast and accurate deep network learning by exponential linear units (elus);Clevert;International Conf. on Learning Representations,2016

5. Assessment of predictions in the model quality assessment category;Cozzetto;ProteinsStruct. Funct. Bioinform.,2007

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3