Evaluating the Quality of TLS Point Cloud Colorization

Author:

Julin ArttuORCID,Kurkela MattiORCID,Rantanen Toni,Virtanen Juho-PekkaORCID,Maksimainen MikkoORCID,Kukko AnteroORCID,Kaartinen HarriORCID,Vaaja Matti T.ORCID,Hyyppä JuhaORCID,Hyyppä HannuORCID

Abstract

Terrestrial laser scanning (TLS) enables the efficient production of high-density colored 3D point clouds of real-world environments. An increasing number of applications from visual and automated interpretation to photorealistic 3D visualizations and experiences rely on accurate and reliable color information. However, insufficient attention has been put into evaluating the colorization quality of the 3D point clouds produced applying TLS. We have developed a method for the evaluation of the point cloud colorization quality of TLS systems with integrated imaging sensors. Our method assesses the capability of several tested systems to reproduce colors and details of a scene by measuring objective image quality metrics from 2D images that were rendered from 3D scanned test charts. The results suggest that the detected problems related to color reproduction (i.e., measured differences in color, white balance, and exposure) could be mitigated in data processing while the issues related to detail reproduction (i.e., measured sharpness and noise) are less in the control of a scanner user. Despite being commendable 3D measuring instruments, improving the colorization tools and workflows, and automated image processing pipelines would potentially increase not only the quality and production efficiency but also the applicability of colored 3D point clouds.

Funder

Academy of Finland

European Social Fund

Finnish Foundation for Technology Promotion

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference109 articles.

1. Image-based reconstruction of spatial appearance and geometric detail

2. Securing Color Fidelity in 3D Architectural Heritage Scenarios

3. A13.1-Scheme for the Identification of Piping Systems-ASMEhttps://www.asme.org/codes-standards/find-codes-standards/a13-1-scheme-identification-piping-systems

4. Interactive dense point clouds in a game engine

5. Use of Photogrammetry in Video Games: A Historical Overview

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3