Research on a Matching Method for Vehicle-Borne Laser Point Cloud and Panoramic Images Based on Occlusion Removal

Author:

Ji Jiashu1,Wang Weiwei1,Ning Yipeng2ORCID,Bo Hanwen1,Ren Yufei1

Affiliation:

1. QiLu Aerospace Information Research Institute, Jinan 250132, China

2. School of Surveying and Geo-Informatics, Shandong Jianzhu University, Jinan 250102, China

Abstract

Vehicle-borne mobile mapping systems (MMSs) have been proven as an efficient means of photogrammetry and remote sensing, as they simultaneously acquire panoramic images, point clouds, and positional information along the collection route from a ground-based perspective. Obtaining accurate matching results between point clouds and images is a key issue in data application from vehicle-borne MMSs. Traditional matching methods, such as point cloud projection, depth map generation, and point cloud coloring, are significantly affected by the processing methods of point clouds and matching logic. In this study, we propose a method for generating matching relationships based on panoramic images, utilizing the raw point cloud map, a series of trajectory points, and the corresponding panoramic images acquired using a vehicle-borne MMS as input data. Through a point-cloud-processing workflow, irrelevant points in the point cloud map are removed, and the point cloud scenes corresponding to the trajectory points are extracted. A collinear model based on spherical projection is employed during the matching process to project the point cloud scenes to the panoramic images. An algorithm for vectorial angle selection is also designed to address filtering out the occluded point cloud projections during the matching process, generating a series of matching results between point clouds and panoramic images corresponding to the trajectory points. Experimental verification indicates that the method generates matching results with an average pixel error of approximately 2.82 pixels, and an average positional error of approximately 4 cm, thus demonstrating efficient processing. This method is suitable for the data fusion of panoramic images and point clouds acquired using vehicle-borne MMSs in road scenes, provides support for various algorithms based on visual features, and has promising applications in fields such as navigation, positioning, surveying, and mapping.

Funder

Key Technology Research and Development Program of Shandong Province

Natural Science Foundation of China

Shandong Provincial Natural Science Foundation

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3