Abstract
This paper presents the design, simulation, fabrication, assembly, and testing of a miniature thermo-pneumatic optofluidic lens. The device comprises two separate zones for air heating and fluid pressing on a flexible membrane. A buried three-dimensional spiral microchannel connects the two zones without pumps or valves. The three-dimensional microfluidic structure is realized using a high-resolution three-dimensional printing technique. Multi-physics finite element simulations are introduced to assess the optimized air chamber design and the low-temperature gradient of the optical liquid. The tunable lens can be operated using a direct-current power supply. The temperature change with time is measured using an infrared thermal imager. The focal length ranges from 5 to 23 mm under a maximum voltage of 6 V. Because of the small size and robust actuation scheme, the device can potentially be integrated into miniature micro-optics devices for the fine-tuning of focal lengths.
Funder
National Natural Science Foundation of China
Natural Science Basic Research Plan in Shaanxi Province of China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献