Affiliation:
1. Shandong University of Technology
Abstract
Optofluidic systems, integrating microfluidic and micro-optical technologies, have emerged as transformative tools for various applications, from molecular detection to flow cytometry. However, existing optofluidic microlenses often rely on external forces for tunability, hindering seamless integration into systems. This work presents an approach using two-photon polymerization (TPP) to fabricate inherently tunable microlens arrays, eliminating the need for supplementary equipment. The optofluidic design incorporates a three-layered structure enabling dynamic manipulation of refractive indices within microchannels, leading to tunable focusing characteristics. It is shown that the TPP fabricated optofluidic microlenses exhibit inherent tunable focal lengths, numerical apertures, and spot sizes without reliance on external forces. This work signifies some advancements in optofluidic technology, offering precise and tunable microlenses with potential applications in adaptive imaging and variable focal length microscopy.
Funder
National Key Research and Development Program of China
Natural Science Foundation of Shandong Province
Taishan Scholar Project of Shandong Province
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献