Turbulent Superstructures in Inert Jets and Diffusion Jet Flames

Author:

Lemanov Vadim,Lukashov Vladimir,Sharov Konstantin

Abstract

An experimental study of spatially localized very large-scale motion superstructures, propagating in a jet of carbon dioxide at low Reynolds numbers, was carried out. A hot-wire anemometer and a high-speed 2D PIV with a frequency of 7 kHz were used as measuring instruments. Such a puff-type superstructure in a jet with a longitudinal dimension of up to 20–30 nozzle diameters are initially formed in the jet source—a long tube in a laminar-turbulent transition mode (without artificial disturbances). It is shown that this regime with intermittency in time, when part of the time flow is laminar and the other part of time is turbulent, exists both at the exit from the nozzle and in the near field of the jet. Thus, the structural stability of such turbulent superstructures in the near field of the jet was found. Despite the large longitudinal scale, these formations have a transverse dimension of the order of several nozzle diameters. These structures have a complex internal topology, that is, superstructures are a conglomeration of vortices of different sizes from macroscale to microscale. Using the example of diffusion combustion of methane in air, it is demonstrated that in reacting jets, the existence of such large localized perturbations is a powerful physical mechanism for a global change in the flame topology. At the same time, the presence of a cascade of vortices of different sizes in the puff composition can lead to fractal deformation of the flame front.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3