Hydrogen Vortex Flow Impact on the Catalytic Wall

Author:

Lemanov Vadim,Lukashov VladimirORCID,Sharov Konstantin

Abstract

An experimental study of a hydrogen-containing jet’s impact on a palladium-based catalyst in an air atmosphere was carried out. High-intensity temperature fluctuations on the catalyst surface are obtained in the case when large-scale vortex structures are contained in the jet. These superstructures have a longitudinal size of 20–30 initial jet diameters and a transverse size of about 3–4 diameters. To form such structures, it is necessary to use long, round tubes in the Reynolds number range of 2000–3000 as a source of the impinging jet when a laminar-turbulent transition occurs in the channel according to the intermittency scenario. This effect was obtained at a low hydrogen content in the mixture (XH2 = 3…15%) and a low initial temperature of the catalyst (180 °C). It is shown that the smallest temperature fluctuations are obtained for the laminar flow in the tube (<1.5%), and they are more significant (<4%) for the turbulent regime at low Reynolds numbers (Re < 6000). The greatest temperature fluctuations were obtained during the laminar-turbulent transition in the tube (up to 11%). Two important modes have been established: the first with maximum temperature fluctuations in the local region of the stagnation point, and the second with the greatest integral increase in temperature fluctuations over the entire area of the catalyst.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3