On density effects and large structure in turbulent mixing layers

Author:

Brown Garry L.,Roshko Anatol

Abstract

Plane turbulent mixing between two streams of different gases (especially nitrogen and helium) was studied in a novel apparatus. Spark shadow pictures showed that, for all ratios of densities in the two streams, the mixing layer is dominated by large coherent structures. High-speed movies showed that these convect at nearly constant speed, and increase their size and spacing discontinuously by amalgamation with neighbouring ones. The pictures and measurements of density fluctuations suggest that turbulent mixing and entrainment is a process of entanglement on the scale of the large structures; some statistical properties of the latter are used to obtain an estimate of entrainment rates. Large changes of the density ratio across the mixing layer were found to have a relatively small effect on the spreading angle; it is concluded that the strong effects, which are observed when one stream is supersonic, are due to compressibility effects, not density effects, as has been generally supposed.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference31 articles.

1. Sunyach, M. 1971 Contribution a l'étude des frontiéres d'écoulements turbulents libres. D.Sc. thesis,L'Université Claude Bernard de Lyon.

2. Sirieix, M. & Solionac, J.-L. 1966 Contributions a 1'étude experimentale de la couche de mélange turbulent isobare d'un écoulement supersonique.Symposium on Separated Flow, Agard Conf. Proc. p.4.

3. PUI, N. K. 1969 The plane mixing layer between parallel streams. M.A. Sc. thesis.University of British Columbia.

4. Sabin, C. M. 1965 An analytical and experimental study of the plane, incompressible, turbulent free-shear layer with arbitrary velocity ratio and pressure gradient.Trans. A.S.M.E. D 87,421.

5. Townsend, A. A. 1956 The Structure of Turbulent Shear Flow.Cambridge University Press.

Cited by 2905 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3