Water Infusion on the Stability of Coal Specimen under Different Static Stress Conditions

Author:

Zhou Zilong,Tan Lihai,Cai XinORCID

Abstract

Underground coal mines are frequently subjected to water infusion, resulting in many mining hazards. This study investigated the effect of water infusion on the stress and energy evolution characteristics of coal specimens representing isolated pillars under different initial axial stress conditions using the discrete element method. A water infusion distribution model was developed, in which random functions were employed to describe water distribution for the purpose of realizing the dispersion of results for a better reliability. Based on the results, a stress-level classification was presented to evaluate the water effect on pillars’ instability. For the investigated coal specimens, the water weakening effect on stress and energy remains stable when the axial geo-stress on pillars is less than 65% of uniaxial compressive strength (UCS). In contrast, when the axial stress coefficient is greater than 65%, pillars become unstable eventually. A higher axial stress coefficient is more likely to introduce a lower critical instability point of the water saturation coefficient for pillars in the process of water infusion. However, the instability point remains random to some extent for specimens following the same water distribution rule under the identical test condition. Two instability types, which also happened randomly, were observed in the numerical results for damaged coal specimens under different water saturation coefficients and axial geo-stresses, namely free-falling and step-falling.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3