Compressive Behavior of Oil Shale with Calcareous Concretion: Parametric Study

Author:

Lyu Jinxing,Shu Jisen,Han Liu,Tovele Gerson S. V.,Chen Tao

Abstract

The non-uniformly distributed calcareous concretion among the oil shale in the Junggar basin of China has led to the difficulty in achieving the slope stability. This paper presents the numerical simulation of the behavior of oil shale with calcareous concretion via the Particle Flow Code (PFC2D) program based on the trial experimental test results. The critical parameters investigated in this research covered the size, distribution, strength, and number of the calcareous concretion. The following conclusions can be drawn based on the discussions and analysis: (1) the hard concretion always results in the high compressive strength of the specimen compared with that without concretion; (2) when the radius of the concretion size raised from 2.5 mm to 20 mm, the peak strength of tested specimens is approximately 50 MPa, whereas, the specimen with large concretion is much more ductile under compression; (3) the compressive behavior of tested specimens is similar even when the position of the concretion is variable; and (4) different from the specimens with only one concretion, these specimens contained two concretions featured with the double “X” failure mode. Meanwhile, the peak strength of the specimens with two hard concretions is about 2.5 times that of its counterparts with two soft concretions. The numerical simulation results are meaningful in guiding the design and analysis of the oil shale slope with the concretion.

Funder

National Natural Science Foundation of china

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference34 articles.

1. Sustainable utilization of oil shale resources and comparison of contemporary technologies used for oil shale processing;Soone;Oil Shale,2003

2. Co-combustion behaviours of a low calorific Uruguayan Oil Shale with biomass wastes

3. Investigations of CO2 storage capacity and flow behavior in shale formation

4. Coaxing oil from shale;Allix;Oilfield Rev.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3