A Global Optimization-Based Method for the Prediction of Water Inrush Hazard from Mining Floor

Author:

Ma Dan,Duan Hongyu,Cai XinORCID,Li Zhenhua,Li Qiang,Zhang Qi

Abstract

Water inrush hazards can be effectively reduced by a reasonable and accurate soft-measuring method on the water inrush quantity from the mine floor. This is quite important for safe mining. However, there is a highly nonlinear relationship between the water outburst from coal seam floors and geological structure, hydrogeology, aquifer, water pressure, water-resisting strata, mining damage, fault and other factors. Therefore, it is difficult to establish a suitable model by traditional methods to forecast the water inrush quantity from the mine floor. Modeling methods developed in other fields can provide adequate models for rock behavior on water inrush. In this study, a new forecast system, which is based on a hybrid genetic algorithm (GA) with the support vector machine (SVM) algorithm, a model structure and the related parameters are proposed simultaneously on water inrush prediction. With the advantages of powerful global optimization functions, implicit parallelism and high stability of the GA, the penalty coefficient, insensitivity coefficient and kernel function parameter of the SVM model are determined as approximately optimal automatically in the spatial dimension. All of these characteristics greatly improve the accuracy and usable range of the SVM model. Testing results show that GA has a useful ability in finding optimal parameters of a SVM model. The performance of the GA optimized SVM (GA-SVM) is superior to the SVM model. The GA-SVM enables the prediction of water inrush and provides a promising solution to the predictive problem for relevant industries.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3