A Simplified, Object-Based Framework for Efficient Landslide Inventorying Using LIDAR Digital Elevation Model Derivatives

Author:

Bunn Michael,Leshchinsky Ben,Olsen Michael,Booth Adam

Abstract

Landslide inventory maps are critical to understand the factors governing landslide occurrence and estimate hazards or sediment delivery to channels. Numerous semi-automated approaches for landslide inventory mapping have been proposed to improve the efficiency and objectivity of the process, but these methods have not been widely adopted by practitioners because of the use of input parameters without physical meaning, a lack of transparency in machine-learning based mapping techniques, and limitations in resulting products, which are not ordinarily designed or tested on a large-scale or in diverse geologic units. To this end, this work presents a new semi-automated method, called the Scarp Identification and Contour Connection Method (SICCM), which adapts to diverse geologic settings automatically or semi-automatically using interventions driven by simple inputs and interpretation from an expert mapper. The applicability of SICCM for use in landslide inventory mapping is demonstrated for three diverse study areas in western Oregon, USA by assessing the utility of the results as a landslide inventory, evaluating the sensitivity of the algorithm to changes in input parameters, and exploring how geology influences the resulting landslide inventory results. In these case studies, accuracies exceed 70%, with reliability and precision of nearly 80%. Conclusions of this work are that (1) SICCM efficiently produces meaningful landslide inventories for large areas as evidenced by mapping 216 km2 of landslide deposits with individual deposits ranging in size from 58 to 1.1 million m2; (2) results are predictable with changes to input parameters, resulting in an intuitive approach; (3) geology does not appear to significantly affect SICCM performance; and (4) the process involves simplifications compared with more complex alternatives from the literature.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference49 articles.

1. Landslide inventory in a rugged forested watershed: a comparison between air-photo and field survey data

2. Slope Failures in Oregon GIS Inventory for three 1996/97 Storm events;Hofmeister;Oregon Dep. Geol. Miner. Ind.,2000

3. Landslides triggered by the 23 November 2000 rainfall event in the Imperia Province, Western Liguria, Italy

4. Inventory of Landslides Triggered by the 1994 Northridge, California Earthquake;Harp;Bull. Seismol. Soc. Am.,1996

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3