Sentinel-1 P-SBAS data for the update of the state of activity of national landslide inventory maps

Author:

Confuorto PierluigiORCID,Casagli Nicola,Casu Francesco,De Luca Claudio,Del Soldato Matteo,Festa Davide,Lanari Riccardo,Manzo Mariarosaria,Onorato Giovanni,Raspini Federico

Abstract

Abstract The redaction of landslide inventory is a fundamental task for risk management and territorial planning activities. The availability of synthetic aperture radar imagery, especially after the launch of Sentinel-1 mission, enables to systematically update landslide inventories covering wide areas in a reduced time frame and at different scales of analysis. In this work, SAR data processed from the fully automatic P-SBAS pipeline have been adopted to update the Italian national landslide database. Specifically, a matrix has been introduced by comparing past landslide state of activity obtained with Envisat data (2003–2010) and that computed with Sentinel-1 (2014–2018). The state of activity was defined by obtaining the projected velocity along the slope dip direction. The analysis involved about 56,000 landslides which showed at least one Sentinel-1 measurement point, of which 74% were classified as dormant, having annual average velocity < 7 mm/year (considering a value of two times the standard deviation) and 26% as active (mean velocity > 7 mm/year). Furthermore, a landslide reliability matrix was introduced on the landslide inventory updated with S1 data, using the measurement point (MP) density within each landslide and the standard deviation of the mean Vslope value of each landslide. In this case, the analysis revealed that more than 80% of landslides has values of reliability from average to very high. Finally, the 2D horizontal and vertical components were computed to characterize magnitude and direction of every type of landslides included in this work, showing that spreadings, deep-seated gravitation slope deformations, and slow flows showed a main horizontal movement, while complex and translational/rotational slides had more heterogeneity in terms of deformation direction. Hence, the work demonstrated that the application of fast and automatically nationwide Sentinel-1 MTInSAR (multi-temporal interferometry SAR) may provide a fundamental aid for landslide inventory update.

Publisher

Springer Science and Business Media LLC

Subject

Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3