Evaluating the accuracy of binary classifiers for geomorphic applications

Author:

Rossi Matthew WilliamORCID

Abstract

Abstract. Increased access to high-resolution topography has revolutionized our ability to map out fine-scale topographic features at watershed to landscape scales. As our “vision” of the land surface has improved, so has the need for more robust quantification of the accuracy of the geomorphic maps we derive from these data. One broad class of mapping challenges is that of binary classification whereby remote sensing data are used to identify the presence or absence of a given feature. Fortunately, there is a large suite of metrics developed in the data sciences well suited to quantifying the pixel-level accuracy of binary classifiers. This analysis focuses on how these metrics perform when there is a need to quantify how the number and extent of landforms are expected to vary as a function of the environmental forcing (e.g., due to climate, ecology, material property, erosion rate). Results from a suite of synthetic surfaces show how the most widely used pixel-level accuracy metric, the F1 score, is particularly poorly suited to quantifying accuracy for this kind of application. Well-known biases to imbalanced data are exacerbated by methodological strategies that calibrate and validate classifiers across settings where feature abundances vary. The Matthews correlation coefficient largely removes this bias over a wide range of feature abundances such that the sensitivity of accuracy scores to geomorphic setting instead embeds information about the size and shape of features and the type of error. If error is random, the Matthews correlation coefficient is insensitive to feature size and shape, though preferential modification of the dominant class can limit the domain over which scores can be compared. If the error is systematic (e.g., due to co-registration error between remote sensing datasets), this metric shows strong sensitivity to feature size and shape such that smaller features with more complex boundaries induce more classification error. Future studies should build on this analysis by interrogating how pixel-level accuracy metrics respond to different kinds of feature distributions indicative of different types of surface processes.

Funder

National Science Foundation

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3