Content-Sensitive Multilevel Point Cluster Construction for ALS Point Cloud Classification

Author:

Xu Zongxia,Zhang Zhenxin,Zhong Ruofei,Chen Dong,Sun Taochun,Deng Xin,Li Zhen,Qin Cheng-Zhi

Abstract

Airborne laser scanning (ALS) point cloud classification is a challenge due to factors including complex scene structure, various densities, surface morphology, and the number of ground objects. A point cloud classification method is presented in this paper, based on content-sensitive multilevel objects (point clusters) in consideration of the density distribution of ground objects. The space projection method is first used to convert the three-dimensional point cloud into a two-dimensional (2D) image. The image is then mapped to the 2D manifold space, and restricted centroidal Voronoi tessellation is built for initial segmentation of content-sensitive point clusters. Thus, the segmentation results take the entity content (density distribution) into account, and the initial classification unit is adapted to the density of ground objects. The normalized cut is then used to segment the initial point clusters to construct content-sensitive multilevel point clusters. Following this, the point-based hierarchical features of each point cluster are extracted, and the multilevel point-cluster feature is constructed by sparse coding and latent Dirichlet allocation models. Finally, the hierarchical classification framework is created based on multilevel point-cluster features, and the AdaBoost classifiers in each level are trained. The recognition results of different levels are combined to effectively improve the classification accuracy of the ALS point cloud in the test process. Two scenes are used to experimentally test the method, and it is compared with three other state-of-the-art techniques.

Funder

National Natural Science Foundation of China

State Key Laboratory of Resources and Environmental Information System

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3