Author:
Tong ,Li ,Zhang ,Chen ,Zhang ,Yang ,Zhang
Abstract
Accurate and effective classification of lidar point clouds with discriminative features expression is a challenging task for scene understanding. In order to improve the accuracy and the robustness of point cloud classification based on single point features, we propose a novel point set multi-level aggregation features extraction and fusion method based on multi-scale max pooling and latent Dirichlet allocation (LDA). To this end, in the hierarchical point set feature extraction, point sets of different levels and sizes are first adaptively generated through multi-level clustering. Then, more effective sparse representation is implemented by locality-constrained linear coding (LLC) based on single point features, which contributes to the extraction of discriminative individual point set features. Next, the local point set features are extracted by combining the max pooling method and the multi-scale pyramid structure constructed by the point’s coordinates within each point set. The global and the local features of the point sets are effectively expressed by the fusion of multi-scale max pooling features and global features constructed by the point set LLC-LDA model. The point clouds are classified by using the point set multi-level aggregation features. Our experiments on two scenes of airborne laser scanning (ALS) point clouds—a mobile laser scanning (MLS) scene point cloud and a terrestrial laser scanning (TLS) scene point cloud—demonstrate the effectiveness of the proposed point set multi-level aggregation features for point cloud classification, and the proposed method outperforms other related and compared algorithms.
Funder
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献