Point Set Multi-Level Aggregation Feature Extraction Based on Multi-Scale Max Pooling and LDA for Point Cloud Classification

Author:

Tong ,Li ,Zhang ,Chen ,Zhang ,Yang ,Zhang

Abstract

Accurate and effective classification of lidar point clouds with discriminative features expression is a challenging task for scene understanding. In order to improve the accuracy and the robustness of point cloud classification based on single point features, we propose a novel point set multi-level aggregation features extraction and fusion method based on multi-scale max pooling and latent Dirichlet allocation (LDA). To this end, in the hierarchical point set feature extraction, point sets of different levels and sizes are first adaptively generated through multi-level clustering. Then, more effective sparse representation is implemented by locality-constrained linear coding (LLC) based on single point features, which contributes to the extraction of discriminative individual point set features. Next, the local point set features are extracted by combining the max pooling method and the multi-scale pyramid structure constructed by the point’s coordinates within each point set. The global and the local features of the point sets are effectively expressed by the fusion of multi-scale max pooling features and global features constructed by the point set LLC-LDA model. The point clouds are classified by using the point set multi-level aggregation features. Our experiments on two scenes of airborne laser scanning (ALS) point clouds—a mobile laser scanning (MLS) scene point cloud and a terrestrial laser scanning (TLS) scene point cloud—demonstrate the effectiveness of the proposed point set multi-level aggregation features for point cloud classification, and the proposed method outperforms other related and compared algorithms.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Features extraction of point clouds based on Otsu’s algorithm;Measurement Science and Technology;2024-03-20

2. A Method of Point Cloud Classification Fused the Multilevel Point Set Features;Proceedings of the 2023 7th International Conference on Electronic Information Technology and Computer Engineering;2023-10-20

3. Adaptive neighbourhood recovery method for machine learning based 3D point cloud classification;International Journal of Remote Sensing;2023-01-02

4. AWSD: An Aircraft Wing Dataset Created by an Automatic Workflow for Data Mining in Geometric Processing;Computer Modeling in Engineering & Sciences;2023

5. Deep Learning Inspired Object Consolidation Approaches Using LiDAR Data for Autonomous Driving: A Review;Archives of Computational Methods in Engineering;2021-12-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3