Higher-Order Conditional Random Fields-Based 3D Semantic Labeling of Airborne Laser-Scanning Point Clouds

Author:

Li Yong,Chen DongORCID,Du Xiance,Xia ShaoboORCID,Wang YuliangORCID,Xu Sheng,Yang Qiang

Abstract

This paper presents a novel framework to achieve 3D semantic labeling of objects (e.g., trees, buildings, and vehicles) from airborne laser-scanning point clouds. To this end, we propose a framework which consists of hierarchical clustering and higher-order conditional random fields (CRF) labeling. In the hierarchical clustering, the raw point clouds are over-segmented into a set of fine-grained clusters by integrating the point density clustering and the classic K-means clustering algorithm, followed by the proposed probability density clustering algorithm. Through this process, we not only obtain a more uniform size and more homogeneous clusters with semantic consistency, but the topological relationships of the cluster’s neighborhood are implicitly maintained by turning the problem of topology maintenance into a clustering problem based on the proposed probability density clustering algorithm. Subsequently, the fine-grained clusters and their topological context are fed into the CRF labeling step, from which the fine-grained cluster’s semantic labels are learned and determined by solving a multi-label energy minimization formulation, which simultaneously considers the unary, pairwise, and higher-order potentials. Our experiments of classifying urban and residential scenes demonstrate that the proposed approach reaches 88.5% and 86.1% of “m F 1 ” estimated by averaging all classes of the F 1 -scores. We prove that the proposed method outperforms five other state-of-the-art methods. In addition, we demonstrate the effectiveness of the proposed energy terms by using an “ablation study” strategy.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FeatureB2SENet: point cloud classification of large scenes;The Visual Computer;2023-03-26

2. Toward 3D Property Valuation—A Review of Urban 3D Modelling Methods for Digital Twin Creation;ISPRS International Journal of Geo-Information;2022-12-22

3. Point Clouds Classification of Large Scenes based on Blueprint Separation Convolutional Neural Network;2022 IEEE 25th International Conference on Computer Supported Cooperative Work in Design (CSCWD);2022-05-04

4. An Inverse Node Graph-Based Method for the Urban Scene Segmentation of 3D Point Clouds;Remote Sensing;2021-08-01

5. PointCartesian-Net: enhancing 3D coordinates for semantic segmentation of large-scale point clouds;Journal of the Optical Society of America A;2021-07-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3