Single- and Double-Comb Tilted Fibre Bragg Grating Refractive Index Demodulation Methods with Fourier Transform Pre-Processing

Author:

Cięszczyk SławomirORCID,Skorupski Krzysztof,Panas Patryk

Abstract

The development of fibre optic sensors for measuring the refractive index is related to the creation of new periodic structures and demodulation algorithms for the measured spectrum. Recently, we proposed a double-comb Tilted fibre Bragg grating (DCTFBG) structure. In this article, we analyse such a structure for measuring the refractive index in comparison to a single classical structure. Increasing the number of modes causes a significant change in the Fourier spectrum of optical spectra. For the purpose of data pre-processing, we propose the Fourier Transform as a filtering method in the frequency domain. Then, we analyse separately the band-filtered optical spectra for several frequency ranges. For quantitative analysis, we use algorithms that use quantitative changes in the transmission, i.e., the method of the envelope and the length of the spectrum contour. We propose the use of the Hilbert transform as the envelope method. The second type of algorithms used are methods determining the shift of spectrum features along the wavelength axis. The method of determining the centre of gravity of the area bounded by the envelope and the maximum of the second derivative of the smoothed cumulative spectrum contour length is proposed here. Using the developed methods, the measurement resolution was achieved at the level of 2 × 10−5 refractive index unit.

Funder

Lublin University of Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3