Adaptive Savitzky–Golay Filters for Analysis of Copy Number Variation Peaks from Whole-Exome Sequencing Data

Author:

Ochieng Peter Juma1ORCID,Maróti Zoltán2ORCID,Dombi József1ORCID,Krész Miklós345ORCID,Békési József1ORCID,Kalmár Tibor2ORCID

Affiliation:

1. Institute of Informatics, University of Szeged, 2 Árpád tér, H-6720 Szeged, Hungary

2. Albert Szent-Györgyi Health Centre, Department of Pediatrics and Pediatric Health Center, University of Szeged, H-6725 Szeged, Hungary

3. InnoRenew CoE, Livade 6, 6310 Izola, Slovenia

4. Andrej Marušič Institute, University of Primorska, Muzejski trg 2, 6000 Koper, Slovenia

5. Department of Applied Informatics, University of Szeged, Boldogasszony sgt. 6, H-6725 Szeged, Hungary

Abstract

Copy number variation (CNV) is a form of structural variation in the human genome that provides medical insight into complex human diseases; while whole-genome sequencing is becoming more affordable, whole-exome sequencing (WES) remains an important tool in clinical diagnostics. Because of its discontinuous nature and unique characteristics of sparse target-enrichment-based WES data, the analysis and detection of CNV peaks remain difficult tasks. The Savitzky–Golay (SG) smoothing is well known as a fast and efficient smoothing method. However, no study has documented the use of this technique for CNV peak detection. It is well known that the effectiveness of the classical SG filter depends on the proper selection of the window length and polynomial degree, which should correspond with the scale of the peak because, in the case of peaks with a high rate of change, the effectiveness of the filter could be restricted. Based on the Savitzky–Golay algorithm, this paper introduces a novel adaptive method to smooth irregular peak distributions. The proposed method ensures high-precision noise reduction by dynamically modifying the results of the prior smoothing to automatically adjust parameters. Our method offers an additional feature extraction technique based on density and Euclidean distance. In comparison to classical Savitzky–Golay filtering and other peer filtering methods, the performance evaluation demonstrates that adaptive Savitzky–Golay filtering performs better. According to experimental results, our method effectively detects CNV peaks across all genomic segments for both short and long tags, with minimal peak height fidelity values (i.e., low estimation bias). As a result, we clearly demonstrate how well the adaptive Savitzky–Golay filtering method works and how its use in the detection of CNV peaks can complement the existing techniques used in CNV peak analysis.

Funder

European Commission

Republic of Slovenia

Slovenian Research Agency

Publisher

MDPI AG

Subject

Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3