Determination of the Highly Sensitive Carboxyl-Graphene Oxide-Based Planar Optical Waveguide Localized Surface Plasmon Resonance Biosensor

Author:

Chen Chien-HsingORCID,Chiang Chang-YueORCID

Abstract

This study develops a highly sensitive and low-cost carboxyl-graphene-oxide-based planar optical waveguide localized surface plasmon resonance biosensor (GO-OW LSPR biosensor), a system based on measuring light intensity changes. The structure of the sensing chip comprises an optical waveguide (OW)-slide glass and microfluidic-poly (methyl methacrylate) (PMMA) substrate, and the OW-slide glass surface-modified gold nanoparticle (AuNP) combined with graphene oxide (GO). As the GO has an abundant carboxyl group (–COOH), the number of capture molecules can be increased. The refractive index sensing system uses silver-coated reflective film to compare the refractive index sensitivity of the GO-OW LSPR biosensor to increase the refractive index sensitivity. The result shows that the signal variation of the system with the silver-coated reflective film is 1.57 times that of the system without the silver-coated reflective film. The refractive index sensitivity is 5.48 RIU−1 and the sensor resolution is 2.52 ± 0.23 × 10−6 RIU. The biochemical sensing experiment performs immunoglobulin G (IgG) and streptavidin detection. The limits of detection of the sensor for IgG and streptavidin are calculated to be 23.41 ± 1.54 pg/mL and 5.18 ± 0.50 pg/mL, respectively. The coefficient of variation (CV) of the repeatability experiment (sample numbers = 3) is smaller than 10.6%. In addition, the affinity constants of the sensor for anti-IgG/IgG and biotin/streptavidin are estimated to be 1.06 × 107 M−1 and 7.30 × 109 M−1, respectively. The result shows that the GO-OW LSPR biosensor has good repeatability and very low detection sensitivity. It can be used for detecting low concentrations or small biomolecules in the future.

Funder

Ministry of Science and Technology

Ministry of Education

The joint research program from National Taiwan University of Science and Technology/National Yunlin University of Science and Technology/National Pingtung University of Science and Technology

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3