Texturing of Soy Yoghurt Alternatives: Pectin Microgel Particles Serve as Inactive Fillers and Weaken the Soy Protein Gel Structure

Author:

Saavedra Isusi Gabriela Itziar1,Marburger Johannes2,Lohner Nils2,van der Schaaf Ulrike S.2ORCID

Affiliation:

1. Thermo Fisher Scientific, Pfannkuchstr. 10-12, D-76185 Karlsruhe, Germany

2. Institute of Process Engineering in Life Sciences—Food Process Engineering, Karlsruhe Institute of Technology, Gotthard-Franz-Str. 3, D-76131 Karlsruhe, Germany

Abstract

Soy-based yoghurt alternatives were highly requested by consumers over the last few years. However, their texture does not always fulfil consumers’ demands as such yoghurt alternatives are often perceived as too firm or too soft, sandy, or fibrous. In order to improve the texture, fibres, for example, in the form of microgel particles (MGP), can be added to the soy matrix. MGP are expected to interact with soy proteins, creating different microstructures and, thus, different gel properties after fermentation. In this study, pectin-based MGP were added in different sizes and concentrations, and the soy gel properties after fermentation were characterised. It was found that the addition of 1 wt.% MGP influenced neither the flow behaviour nor the tribological/lubrication properties of the soy matrix, regardless of the MGP size. However, at higher MGP concentrations (3 and 5 wt.%), the viscosity and yield stress were reduced, the gel strength and cross-linking density decreased, and the water-holding capacity was reduced. At 5 wt.%, strong and visible phase separation occurred. Thus, it can be concluded that apple pectin-based MGP serve as inactive fillers in fermented soy protein matrices. They can, therefore, be used to weaken the gel matrix purposely to create novel microstructures.

Funder

Federal Ministry of Economic Affairs and Climate Action

KIT-Publication Fund of the Karlsruhe Institute of Technology

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3