Research on Path Planning and Path Tracking Control of Autonomous Vehicles Based on Improved APF and SMC

Author:

Zhang Yong1,Liu Kangting1,Gao Feng1ORCID,Zhao Fengkui1

Affiliation:

1. College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing 210037, China

Abstract

Path planning and tracking control is an essential part of autonomous vehicle research. In terms of path planning, the artificial potential field (APF) algorithm has attracted much attention due to its completeness. However, it has many limitations, such as local minima, unreachable targets, and inadequate safety. This study proposes an improved APF algorithm that addresses these issues. Firstly, a repulsion field action area is designed to consider the velocity of the nearest obstacle. Secondly, a road repulsion field is introduced to ensure the safety of the vehicle while driving. Thirdly, the distance factor between the target point and the virtual sub-target point is established to facilitate smooth driving and parking. Fourthly, a velocity repulsion field is created to avoid collisions. Finally, these repulsive fields are merged to derive a new formula, which facilitates the planning of a route that aligns with the structured road. After path planning, a cubic B-spline path optimization method is proposed to optimize the path obtained using the improved APF algorithm. In terms of path tracking, an improved sliding mode controller is designed. This controller integrates lateral and heading errors, improves the sliding mode function, and enhances the accuracy of path tracking. The MATLAB platform is used to verify the effectiveness of the improved APF algorithm. The results demonstrate that it effectively plans a path that considers car kinematics, resulting in smaller and more continuous heading angles and curvatures compared with general APF planning. In a tracking control experiment conducted on the Carsim–Simulink platform, the lateral error of the vehicle is controlled within 0.06 m at both high and low speeds, and the yaw angle error is controlled within 0.3 rad. These results validate the traceability of the improved APF method proposed in this study and the high tracking accuracy of the controller.

Funder

Industrial Proactive and Key Technology Program of Jiangsu Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3