Deviation Sequence Neural Network Control for Path Tracking of Autonomous Vehicles

Author:

Su Liang1,Mao Yiyuan2,Zhang Feng2ORCID,Lin Baoxing1,Zhang Yong2

Affiliation:

1. Xiamen King Long United Automotive Industry Co., Ltd., Xiamen 361021, China

2. College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, China

Abstract

Despite its excellent performance in path tracking control, the model predictive control (MPC) is limited by computational complexity in practical applications. The neural network control (NNC) is another attractive solution by learning the historical driving data to approximate optimal control law, but a concern is that the NNC lacks security guarantees when encountering new scenarios that it has never been trained on. Inspired by the prediction process of MPC, the deviation sequence neural network control (DS-NNC) separates the vehicle dynamic model from the approximation process and rebuilds the input of the neural network (NN). Taking full use of the deviation sequence architecture and the real-time vehicle dynamic model, the DS-NNC is expected to enhance the adaptability and the training efficiency of NN. Finally, the effectiveness of the proposed controller is verified through simulations in Matlab/Simulink. The simulation results indicate that the proposed path tracking NN controller possesses adaptability and learning capabilities, enabling it to generate optimal control variables within a shorter computation time and handle variations in vehicle models and driving scenarios.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3