Machine Learning Models and Multiparametric Magnetic Resonance Imaging for the Prediction of Pathologic Response to Neoadjuvant Chemotherapy in Breast Cancer

Author:

Herrero Vicent Carmen,Tudela Xavier,Moreno Ruiz PaulaORCID,Pedralva Víctor,Jiménez Pastor AnaORCID,Ahicart Daniel,Rubio Novella Silvia,Meneu Isabel,Montes Albuixech Ángela,Santamaria Miguel Ángel,Fonfria María,Fuster-Matanzo Almudena,Olmos Antón Santiago,Martínez de Dueñas Eduardo

Abstract

Background: Most breast cancer (BC) patients fail to achieve pathological complete response (pCR) after neoadjuvant chemotherapy (NAC). The aim of this study was to evaluate whether imaging features (perfusion/diffusion imaging biomarkers + radiomic features) extracted from pre-treatment multiparametric (mp)MRIs were able to predict, alone or in combination with clinical data, pCR to NAC. Methods: Patients with stage II-III BC receiving NAC and undergoing breast mpMRI were retrospectively evaluated. Imaging features were extracted from mpMRIs performed before NAC. Three different machine learning models based on imaging features, clinical data or imaging features + clinical data were trained to predict pCR. Confusion matrices and performance metrics were obtained to assess model performance. Statistical analyses were conducted to evaluate differences between responders and non-responders. Results: Fifty-eight patients (median [range] age, 52 [45–58] years) were included, of whom 12 showed pCR. The combined model improved pCR prediction compared to clinical and imaging models, yielding 91.5% of accuracy with no false positive cases and only 17% false negative results. Changes in different parameters between responders and non-responders suggested a possible increase in vascularity and reduced tumour heterogeneity in patients with pCR, with the percentile 25th of time-to-peak (TTP), a classical perfusion parameter, being able to discriminate both groups in a 75% of the cases. Conclusions: A combination of mpMRI-derived imaging features and clinical variables was able to successfully predict pCR to NAC. Specific patient profiles according to tumour vascularity and heterogeneity might explain pCR differences, where TTP could emerge as a putative surrogate marker for pCR.

Funder

Fundación Hospital Provincial de Castellón

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3