Accessible Machine Learning and Deep Learning Models Predict Response and Survival in Early Stage Hormone Receptor-Positive/HER2-Negative Breast Cancer Receiving Neoadjuvant Chemotherapy

Author:

Garufi Giovanna1,Mastrantoni Luca2ORCID,Giordano Giulia3,Maliziola Noemi2,Monte Elena Di2,Arcuri Giorgia2,Frescura Valentina2,Rotondi Angelachiara2,Orlandi Armando4,Carbognin Luisa5,Palazzo Antonella1,Miglietta Federica6,Pontolillo Letizia1,Fabi Alessandra5,Gerratana Lorenzo7,Pannunzio Sergio1,Paris Ida8ORCID,Pilotto Sara9ORCID,Marazzi Fabio10,Franco Antonio11,Franceschini Gianluca11,Dieci Maria Vittoria12ORCID,Mazzeo Roberta7,Puglisi Fabio7,Guarneri Valentina12ORCID,Milella Michele13,Scambia Giovanni14,Giannarelli Diana15,Tortora Giampaolo16ORCID,Bria Emilio16

Affiliation:

1. Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS Rome, Italy.

2. Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy

3. Department of Geriatrics, Orthopedics and Rheumatological Sciences, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS Rome, Italy.

4. Fondazione Policlinico Universitario A

5. Precision Medicine Breast Unit, Scientific Directorate, Department of Women, Children and Public Health Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy

6. Medical Oncology 2, Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy

7. Oncologia Medica, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano (PN), Italy University of Udine, Italy.

8. Fondazione Policlinico Universitario A. Gemelli IRCCS

9. University of Verona

10. UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Italy.

11. Breast Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy

12. Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova

13. Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy.

14. Agostino Gemelli University Polyclinic

15. Biostatistic, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy

16. Fondazione Policlinico Universitario Agostino Gemelli, IRCCS

Abstract

Abstract Hormone receptor-positive/HER2 negative breast cancer (BC) is the most common subtype of BC and typically occurs as an early, operable disease. In patients receiving neoadjuvant chemotherapy (NACT), pathological complete response (pCR) is rare and multiple efforts have been made to predict disease recurrence and survival. We developed a framework to predict pCR, disease-free survival (DFS) and overall survival (OS) using clinicopathological characteristics widely available at diagnosis and after surgery. The machine learning (ML) model trained to predict pCR (n = 463) was evaluated in an internal validation cohort (n = 109) and validated in an external validation cohort (n = 171), achieving an area under the curve (AUC) of respectively 0.86 and 0.81. The models trained to predict DFS and OS were evaluated in the internal validation cohort, achieving a concordance index of 0.70 and 0.69. Our results emphasize the value of including accessible ML algorithms in clinical practice and provide a framework for the development of risk-adapted clinical trials based on ML models.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3