Deep learning Radiomics Based on Two-Dimensional Ultrasound for Predicting the Efficacy of Neoadjuvant Chemotherapy in Breast Cancer

Author:

Wang Zhan1,Li Xiaoqin2,Zhang Heng2,Duan Tongtong2,Zhang Chao2,Zhao Tong2ORCID

Affiliation:

1. Jintan Peoples Hospital, Jiangsu, Changzhou, China

2. Changzhou Second People’s Hospital Affiliated to Nanjing Medical University, Jiangsu, Changzhou, China

Abstract

We investigate the predictive value of a comprehensive model based on preoperative ultrasound radiomics, deep learning, and clinical features for pathological complete response (pCR) after neoadjuvant chemotherapy (NAC) for the breast cancer. We enrolled 155 patients with pathologically confirmed breast cancer who underwent NAC. The patients were randomly divided into the training set and the validation set in the ratio of 7:3. The deep learning and radiomics features of pre-treatment ultrasound images were extracted, and the random forest recursive elimination algorithm and the least absolute shrinkage and selection operator were used for feature screening and DL-Score and Rad-Score construction. According to multifactorial logistic regression, independent clinical predictors, DL-Score, and Rad-Score were selected to construct the comprehensive prediction model DLRC. The performance of the model was evaluated in terms of its predictive effect, and clinical practicability. Compared to the clinical, radiomics (Rad-Score), and deep learning (DL-Score) models, the DLRC accurately predicted the pCR status, with an area under the curve (AUC) of 0.937 (95%CI: 0.895–0.970) in the training set and 0.914 (95%CI: 0.838–0.973) in the validation set. Moreover, decision curve analysis confirmed that the DLRC had the highest clinical value among all models. The comprehensive model DLRC based on ultrasound radiomics, deep learning, and clinical features can effectively and accurately predict the pCR status of breast cancer after NAC, which is conducive to assisting clinical personalized diagnosis and treatment plan.

Funder

Special Fund of Science and Technology Program of Jiangsu Province

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3