Intracellular Amplifiers of Reactive Oxygen Species Affecting Mitochondria as Radiosensitizers

Author:

Xu Hong-Gui,Reshetnikov Viktor,Wondrak Marit,Eckhardt Lisa,Kunz-Schughart Leoni A.ORCID,Janko ChristinaORCID,Tietze Rainer,Alexiou Christoph,Borchardt Hannes,Aigner AchimORCID,Gong Wenjie,Schmitt MichaelORCID,Sellner LeopoldORCID,Daum Steffen,Özkan Hülya Gizem,Mokhir Andriy

Abstract

Radiotherapy (RT) efficacy can be improved by using radiosensitizers, i.e., drugs enhancing the effect of ionizing radiation (IR). One of the side effects of RT includes damage of normal tissue in close proximity to the treated tumor. This problem can be solved by applying cancer specific radiosensitizers. N-Alkylaminoferrocene-based (NAAF) prodrugs produce reactive oxygen species (ROS) in cancer cells, but not in normal cells. Therefore, they can potentially act as cancer specific radiosensitizers. However, early NAAF prodrugs did not exhibit this property. Since functional mitochondria are important for RT resistance, we assumed that NAAF prodrugs affecting mitochondria in parallel with increasing intracellular ROS can potentially exhibit synergy with RT. We applied sequential Cu+-catalyzed alkyne-azide cycloadditions (CuAAC) to obtain a series of NAAF derivatives with the goal of improving anticancer efficacies over already existing compounds. One of the obtained prodrugs (2c) exhibited high anticancer activity with IC50 values in the range of 5–7.1 µM in human ovarian carcinoma, Burkitt’s lymphoma, pancreatic carcinoma and T-cell leukemia cells retained moderate water solubility and showed cancer specificity. 2c strongly affects mitochondria of cancer cells, leading to the amplification of mitochondrial and total ROS production and thus causing cell death via necrosis and apoptosis. We observed that 2c acts as a radiosensitizer in human head and neck squamous carcinoma cells. This is the first demonstration of a synergy between the radiotherapy and NAAF-based ROS amplifiers.

Funder

Deutsche Forschungsgemeinschaft

European Union

Friedrich-Alexander-University (FAU) of Erlangen-Nürnberg

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3