Development of Symbolic Expressions Ensemble for Breast Cancer Type Classification Using Genetic Programming Symbolic Classifier and Decision Tree Classifier

Author:

Anđelić Nikola1ORCID,Baressi Šegota Sandi1ORCID

Affiliation:

1. Department of Automation and Electronics, Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, Croatia

Abstract

Breast cancer is a type of cancer with several sub-types. It occurs when cells in breast tissue grow out of control. The accurate sub-type classification of a patient diagnosed with breast cancer is mandatory for the application of proper treatment. Breast cancer classification based on gene expression is challenging even for artificial intelligence (AI) due to the large number of gene expressions. The idea in this paper is to utilize the genetic programming symbolic classifier (GPSC) on the publicly available dataset to obtain a set of symbolic expressions (SEs) that can classify the breast cancer sub-type using gene expressions with high classification accuracy. The initial problem with the used dataset is a large number of input variables (54,676 gene expressions), a small number of dataset samples (151 samples), and six classes of breast cancer sub-types that are highly imbalanced. The large number of input variables is solved with principal component analysis (PCA), while the small number of samples and the large imbalance between class samples are solved with the application of different oversampling methods generating different dataset variations. On each oversampled dataset, the GPSC with random hyperparameter values search (RHVS) method is trained using 5-fold cross validation (5CV) to obtain a set of SEs. The best set of SEs is chosen based on mean values of accuracy (ACC), the area under the receiving operating characteristic curve (AUC), precision, recall, and F1-score values. In this case, the highest classification accuracy is equal to 0.992 across all evaluation metric methods. The best set of SEs is additionally combined with a decision tree classifier, which slightly improves ACC to 0.994.

Funder

CEEPUS network

European Regional Development

Erasmus+ project WICT

University of Rijeka Scientific

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3