A Hybrid Gene Selection Strategy Based on Fisher and Ant Colony Optimization Algorithm for Breast Cancer Classification

Author:

Hamim Mohammed,El Moudden Ismail,D Pant Mohan,Moutachaouik Hicham,Hain Mustapha

Abstract

<div id="titleAndAbstract"><p class="0abstract">Breast cancer poses the greatest threat to human life and especially to women's life. Despite the progress made in data mining technology in recent years, the ability to predict and diagnose such fatal diseases based on gene expression data still reveals a limited prediction performance, which may not be surprising since most of the genes in expression data are believed to be irrelevant or redundant. The dimensionality reduction process may be considered as a crucial step to analyze gene expression data, as it can reduce the high dimensionality of the breast cancer datasets, which may result into a better prediction performance of such diseases. The paper suggests a new hybrid approach-based gene selection that combines the filter method and the Ant Colony Optimization algorithm to find the smallest subset of informative genes (genes markers) among 24,481 genes. The proposed approach combines four machine learning algorithms - C5.0 Decision Tree, Support Vector Machines, K-Nearest Neighbors algorithm, and Random Forest Classifier - to classify each of the selected samples (patients) into two classes which have cancer or not.  Compared with existing methods in the literature, experimental results indicate that our proposed gene selection approach achieved globally higher classification accuracies with a relatively smaller number of genes.</p></div>

Publisher

International Association of Online Engineering (IAOE)

Subject

General Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3