An Advanced Methodology for Crystal System Detection in Li-ion Batteries

Author:

Anđelić Nikola1ORCID,Baressi Šegota Sandi1ORCID

Affiliation:

1. Department of Automation and Electronics, Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, Croatia

Abstract

Detecting the crystal system of lithium-ion batteries is crucial for optimizing their performance and safety. Understanding the arrangement of atoms or ions within the battery’s electrodes and electrolyte allows for improvements in energy density, cycling stability, and safety features. This knowledge also guides material design and fabrication techniques, driving advancements in battery technology for various applications. In this paper, a publicly available dataset was utilized to develop mathematical equations (MEs) using a genetic programming symbolic classifier (GPSC) to determine the type of crystal structure in Li-ion batteries with a high classification performance. The dataset consists of three different classes transformed into three binary classification datasets using a one-versus-rest approach. Since the target variable of each dataset variation is imbalanced, several oversampling techniques were employed to achieve balanced dataset variations. The GPSC was trained on these balanced dataset variations using a five-fold cross-validation (5FCV) process, and the optimal GPSC hyperparameter values were searched for using a random hyperparameter value search (RHVS) method. The goal was to find the optimal combination of GPSC hyperparameter values to achieve the highest classification performance. After obtaining MEs using the GPSC with the highest classification performance, they were combined and tested on initial binary classification dataset variations. Based on the conducted investigation, the ensemble of MEs could detect the crystal system of Li-ion batteries with a high classification accuracy (1.0).

Funder

CEEPUS network

Erasmus+ project WICT

University of Rijeka Scientific Grant

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3