Abstract
Molecular pathologic diagnosis is important in clinical (oncology) practice. Integration of molecular pathology into epidemiological methods (i.e., molecular pathological epidemiology) allows for investigating the distinct etiology of disease subtypes based on biomarker analyses, thereby contributing to precision medicine and prevention. However, existing approaches for investigating etiological heterogeneity deal with categorical subtypes. We aimed to fully leverage continuous measures available in most biomarker readouts (gene/protein expression levels, signaling pathway activation, immune cell counts, microbiome/microbial abundance in tumor microenvironment, etc.). We present a cause-specific Cox proportional hazards regression model for evaluating how the exposure–disease subtype association changes across continuous subtyping biomarker levels. Utilizing two longitudinal observational prospective cohort studies, we investigated how the association of alcohol intake (a risk factor) with colorectal cancer incidence differed across the continuous values of tumor epigenetic DNA methylation at long interspersed nucleotide element-1 (LINE-1). The heterogeneous alcohol effect was modeled using different functions of the LINE-1 marker to demonstrate the method’s flexibility. This real-world proof-of-principle computational application demonstrates how the new method enables visualizing the trend of the exposure effect over continuous marker levels. The utilization of continuous biomarker data without categorization for investigating etiological heterogeneity can advance our understanding of biological and pathogenic mechanisms.
Funder
National Institutes of Health
Cancer Research UK
Japan Society for the Promotion of Science
Caner Prevention Foundation
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献