Abstract
With increasingly prominent environmental problems, controlling automobile exhaust has become essential to the environment. The fuel consumption of transportation is the critical factor that determines exhaust gas. By analyzing the naturalistic driving data of heavy-duty diesel trucks (HDDTs), this paper explored the influence of engine technical state, road features, weather, and temperature conditions on fuel consumption during driving. The detailed process is as follows: Firstly, we collected 1153 naturalistic driving data from 34 HDDTs and made a specific analysis and summary description of the data; secondly, by establishing a binary Logistic regression model, we quantitatively explored the influence of significant factors on the fuel consumption; meanwhile, based on quantitative analysis of factor’s effectiveness, this research used several machine learning algorithms (back-propagation neural network, decision tree, and random forest) to build fuel consumption predictors, and compared the prediction performance of different algorithms. The results showed that the prediction accuracy of the decision tree, back-propagation (BP) neural network, and random forest is 81.38%, 83.98%, and 86.58%, respectively. The random forest showed the best performance in predicting. The conclusions can assist transportation companies in formulating driving training strategies and contribute to reducing energy consumption and emissions.
Funder
National Natural Science Foundation of China
Jiangsu Creative PHD student sponsored project
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献