Deep Learning Based Methods for Molecular Similarity Searching: A Systematic Review

Author:

Nasser Maged1ORCID,Yusof Umi Kalsom1ORCID,Salim Naomie2

Affiliation:

1. School of Computer Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia

2. UTM Big Data Centre, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia

Abstract

In rational drug design, the concept of molecular similarity searching is frequently used to identify molecules with similar functionalities by looking up structurally related molecules in chemical databases. Different methods have been developed to measure the similarity of molecules to a target query. Although the approaches perform effectively, particularly when dealing with molecules with homogenous active structures, they fall short when dealing with compounds that have heterogeneous structural compounds. In recent times, deep learning methods have been exploited for improving the performance of molecule searching due to their feature extraction power and generalization capabilities. However, despite numerous research studies on deep-learning-based molecular similarity searches, relatively few secondary research was carried out in the area. This research aims to provide a systematic literature review (SLR) on deep-learning-based molecular similarity searches to enable researchers and practitioners to better understand the current trends and issues in the field. The study accesses 875 distinctive papers from the selected journals and conferences, which were published over the last thirteen years (2010–2023). After the full-text eligibility analysis and careful screening of the abstract, 65 studies were selected for our SLR. The review’s findings showed that the multilayer perceptrons (MLPs) and autoencoders (AEs) are the most frequently used deep learning models for molecular similarity searching; next are the models based on convolutional neural networks (CNNs) techniques. The ChEMBL dataset and DrugBank standard dataset are the two datasets that are most frequently used for the evaluation of deep learning methods for molecular similarity searching based on the results. In addition, the results show that the most popular methods for optimizing the performance of molecular similarity searching are new representation approaches and reweighing features techniques, and, for evaluating the efficiency of deep-learning-based molecular similarity searching, the most widely used metrics are the area under the curve (AUC) and precision measures.

Funder

Research Creativity and Management Office

School of Computer Sciences at the Universiti Sains Malaysia

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3