Structure-Based Discovery of Potential HPV E6 and EBNA1 Inhibitors: Implications for Cervical Cancer Treatment

Author:

Broni Emmanuel1ORCID,Ashley Carolyn N.1ORCID,Velazquez Miriam12,Sakyi Patrick O.34,Kwofie Samuel K.56ORCID,Miller Whelton A.12ORCID

Affiliation:

1. Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA

2. Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA

3. Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana

4. Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Sunyani P.O. Box 214, Ghana

5. Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana

6. Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana

Abstract

Cervical cancer is the fourth most diagnosed cancer and the fourth leading cause of cancer death in women globally. Its onset and progression have been attributed to high-risk human papillomavirus (HPV) types, especially 16 and 18, while the Epstein–Barr virus (EBV) is believed to also significantly contribute to cervical cancer growth. The E6 protein associated with high-risk HPV strains, such as HPV16 and HPV18, is known for its role in promoting cervical cancer and other anogenital cancers. E6 proteins contribute to the malignant transformation of infected cells by targeting and degrading tumor suppressor proteins, especially p53. On the other hand, EBV nuclear antigen 1 (EBNA1) plays a crucial role in the maintenance and replication of the EBV genome in infected cells. EBNA1 is believed to increase HPV E6 and E7 levels, as well as c-MYC, and BIRC5 cellular genes in the HeLa cell line, implying that HPV/EBV co-infection accelerates cervical cancer onset and growth. Thus, the E6 and EBNA1 antigens of HPV and EBV, respectively, are attractive targets for cervical cancer immunotherapy. This study, therefore, virtually screened for potential drug candidates with good binding affinity to all three oncoviral proteins, HPV16 E6, HPV18 E6, and EBNA1. The compounds were further subjected to ADMET profiling, biological activity predictions, molecular dynamics (MD) simulations, and molecular mechanics Poisson–Boltzmann surface area (MM/PBSA) calculations. A total of six compounds comprising ZINC000013380012, ZINC000070454124, ZINC000014588133, ZINC000085568136, ZINC000095909247, and ZINC000085597263 demonstrated very strong affinity (≤−60 kJ/mol) to the three oncoviral proteins (EBNA1, HPV16 E6, and HPV18 E6) after being subjected to docking, MD, and MM/PBSA. These compounds demonstrated relatively stronger binding than the controls used, inhibitors of EBNA1 (VK-1727) and HPV E6 (baicalein and gossypetin). Biological activity predictions also corroborated their antineoplastic, p53-enhancing, Pin1 inhibitory, and JAK2 inhibitory activities. Further experimental testing is required to validate the ability of the shortlisted compounds to silence the insidious effects of HPV E6 and EBNA1 proteins in cervical cancers.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3