Abstract
In the last few decades, text mining has been used to extract knowledge from free texts. Applying neural networks and deep learning to natural language processing (NLP) tasks has led to many accomplishments for real-world language problems over the years. The developments of the last five years have resulted in techniques that have allowed for the practical application of transfer learning in NLP. The advances in the field have been substantial, and the milestone of outperforming human baseline performance based on the general language understanding evaluation has been achieved. This paper implements a targeted literature review to outline, describe, explain, and put into context the crucial techniques that helped achieve this milestone. The research presented here is a targeted review of neural language models that present vital steps towards a general language representation model.
Subject
General Physics and Astronomy
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献