On clustering levels of a hierarchical categorical risk factor

Author:

Campo Bavo D.C.ORCID,Antonio Katrien

Abstract

Abstract Handling nominal covariates with a large number of categories is challenging for both statistical and machine learning techniques. This problem is further exacerbated when the nominal variable has a hierarchical structure. We commonly rely on methods such as the random effects approach to incorporate these covariates in a predictive model. Nonetheless, in certain situations, even the random effects approach may encounter estimation problems. We propose the data-driven Partitioning Hierarchical Risk-factors Adaptive Top-down algorithm to reduce the hierarchically structured risk factor to its essence, by grouping similar categories at each level of the hierarchy. We work top-down and engineer several features to characterize the profile of the categories at a specific level in the hierarchy. In our workers’ compensation case study, we characterize the risk profile of an industry via its observed damage rates and claim frequencies. In addition, we use embeddings to encode the textual description of the economic activity of the insured company. These features are then used as input in a clustering algorithm to group similar categories. Our method substantially reduces the number of categories and results in a grouping that is generalizable to out-of-sample data. Moreover, we obtain a better differentiation between high-risk and low-risk companies.

Publisher

Cambridge University Press (CUP)

Subject

Statistics, Probability and Uncertainty,Economics and Econometrics,Statistics and Probability

Reference104 articles.

1. A note on a hierarchical interpretation for negative variance components;Molenberghs;Statistical Modelling,2011

2. Rentzmann, S. & Wuthrich, M. V. (2019). Unsupervised learning: what is a sports car? Available at: https://ssrn.com/abstract=3439358 or 10.2139/ssrn.3439358.

3. Using clusters based on social determinants to identify the top 5% utilizers of health care;Rosenberg;North American Actuarial Journal,2022

4. Approximate inference in generalized linear mixed models;Breslow;Journal of the American Statistical Association,1993

5. Clustering in an object-oriented environment;Struyf;Journal of Statistical Software,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3