Normalized Augmented Inverse Probability Weighting with Neural Network Predictions

Author:

Rostami MehdiORCID,Saarela OlliORCID

Abstract

The estimation of average treatment effect (ATE) as a causal parameter is carried out in two steps, where in the first step, the treatment and outcome are modeled to incorporate the potential confounders, and in the second step, the predictions are inserted into the ATE estimators such as the augmented inverse probability weighting (AIPW) estimator. Due to the concerns regarding the non-linear or unknown relationships between confounders and the treatment and outcome, there has been interest in applying non-parametric methods such as machine learning (ML) algorithms instead. Some of the literature proposes to use two separate neural networks (NNs) where there is no regularization on the network’s parameters except the stochastic gradient descent (SGD) in the NN’s optimization. Our simulations indicate that the AIPW estimator suffers extensively if no regularization is utilized. We propose the normalization of AIPW (referred to as nAIPW) which can be helpful in some scenarios. nAIPW, provably, has the same properties as AIPW, that is, the double-robustness and orthogonality properties. Further, if the first-step algorithms converge fast enough, under regulatory conditions, nAIPW will be asymptotically normal. We also compare the performance of AIPW and nAIPW in terms of the bias and variance when small to moderate L1 regularization is imposed on the NNs.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference30 articles.

1. Deep neural networks for estimation and inference: Application to causal effects and other semiparametric estimands;Farrell;arXiv,2018

2. Deep Learning;Goodfellow,2016

3. Polynomial regression as an alternative to neural nets;Cheng;arXiv,2018

4. Empirical evaluation of rectified activations in convolutional network;Xu;arXiv,2015

5. $H_{\infty }$ Weighted Integral Event-Triggered Synchronization of Neural Networks With Mixed Delays

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3