Targeted L1-Regularization and Joint Modeling of Neural Networks for Causal Inference

Author:

Rostami MehdiORCID,Saarela OlliORCID

Abstract

The calculation of the Augmented Inverse Probability Weighting (AIPW) estimator of the Average Treatment Effect (ATE) is carried out in two steps, where in the first step, the treatment and outcome are modeled, and in the second step, the predictions are inserted into the AIPW estimator. The model misspecification in the first step has led researchers to utilize Machine Learning algorithms instead of parametric algorithms. However, the existence of strong confounders and/or Instrumental Variables (IVs) can lead the complex ML algorithms to provide perfect predictions for the treatment model which can violate the positivity assumption and elevate the variance of AIPW estimators. Thus the complexity of ML algorithms must be controlled to avoid perfect predictions for the treatment model while still learning the relationship between the confounders and the treatment and outcome. We use two NN architectures with an L1-regularization on specific NN parameters and investigate how their certain hyperparameters should be tuned in the presence of confounders and IVs to achieve a low bias-variance tradeoff for ATE estimators such as AIPW estimator. Through simulation results, we will provide recommendations as to how NNs can be employed for ATE estimation.

Funder

University of Toronto

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3