Macroscopic and Microscopic Spray Characteristics of Diesel and Gasoline in a Constant Volume Chamber

Author:

Lee Moo-Yeon,Lee Gee-Soo,Kim Chan-JungORCID,Seo Jae-Hyeong,Kim Ki-Hyun

Abstract

The aim of this study is to investigate the spray characteristics of diesel and gasoline under various ambient conditions. Ambient conditions were simulated, ranging from atmospheric conditions to high pressure and temperature conditions such as those inside a combustion chamber of an internal combustion engine. Spray tip penetration and spray cross-sectional area were calculated in liquid and vapor spray development. In addition, initial spray development and end of injection near nozzle were visualized microscopically, to study spray atomization characteristics. Three injection pressures of 50 MPa, 100 MPa, and 150 MPa were tested. The ambient temperature was varied from 300 K to 950 K, and the ambient density was maintained between 1 kg/m3 and 20 kg/m3. Gasoline and diesel exhibited similar liquid penetration and spray cross-sectional area at every ambient density condition under non-evaporation. As the ambient temperature increased, liquid penetration length and spray area of both fuels’ spray were shortened and decreased by fuel evaporation near the spray boundary. However, the two fuels were characterized by different slopes in the decrement trend of spray area as the ambient temperature increased. The decrement slope trend coincided considerably with the distillation curve characteristics of the two fuels. Vapor spray boundary of gasoline and diesel was particularly similar, despite the different amount of fuel evaporation. It was assumed that the outer spray boundary of gasoline and diesel is always similar when using the same injector and injection conditions. In microscopic spray visualization, gasoline spray displayed a more unstable and asymmetric spray shape, with more dispersed and distributed fuel ligaments during initial spray development. Large amounts of fuel vapor cloud were observed near the nozzle at the end of the injection process with gasoline. Some amounts of this vapor cloud were attributed to the evaporation of residual fuel in the nozzle sac.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference35 articles.

1. Advanced compression-ignition engines—understanding the in-cylinder processes

2. Homogeneous Charge Compression Ignition (HCCI) Engines;Zhao,2003

3. Trial of new concept diesel combustion system–premixed compression ignition combustion;Yoshinori;SAE Trans. J. Eng.,1995

4. A Study of Methods to Lower HC and CO Emissions in Diesel HCCI

5. Gasoline Fuelled Partially Premixed Compression Ignition in a Light Duty Multi Cylinder Engine: A Study of Low Load and Low Speed Operation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3